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Abstract

The in¯uence of periodic, isolated bell-shaped and random initial perturbations on single-layer fold ampli®cation was

numerically modelled for a wide range of elasto-viscous material properties. The results from this ®nite-element modelling
(FEM) are markedly di�erent from previous ®nite-di�erence (FLAC) models, but similar to analogue scale-models. For periodic
perturbations, only the introduced waveform is ampli®ed into folds, even for an initial wavelength much shorter or longer than

the fastest growing `dominant' wavelength. Hinge and in¯ection points remain ®xed to the same material points and there is no
hinge migration to allow development of the dominant wavelength. Enhanced elastic behaviour increases the growth rate of
shorter wavelength components and hence modi®es the ®nal fold shape, but hinge or in¯ection points still remain ®xed. For

initial isolated bell-shaped perturbations, a slow serial sideways propagation of folding along the layer leads to the eventual
development of an internally periodic fold packet of near constant amplitude at high values of shortening (>50%). Increased
elastic or non-linear power law viscous behaviour promotes localization about the initial isolated perturbation. Even for random

initial irregularities, the ®nal high-amplitude fold shape is only quasi-periodic and still shows the in¯uence of the initial
perturbation geometry. The maximum amplitude of these initial irregularities also in¯uences the ®nal fold shape, especially when
the growth rate of the folds is low. For the same viscosity contrast, smaller initial amplitude promotes growth of long
wavelength components producing ®nal shapes similar to those developed in higher viscosity ratio experiments. Increased elastic

behaviour promotes shorter wavelengths, faster growth rates and greater wavelength selectivity, resulting in more regular
periodic forms that are less in¯uenced by initial perturbation amplitude. However, in all cases investigated, the initial
perturbation geometry still exerts an in¯uence on the ®nite fold shape and the irregular, only quasi-periodic form of many

natural folds re¯ects this initial irregularity control. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Although rocks, in common with all materials, show

both short-term elasticity and longer-term viscous

creep, theoretical and numerical studies of folding

have generally considered only limited combinations

of the full behaviour. Biot (1959, 1965) developed the

basic principles for a comprehensive approach but

application has been hindered by the inherent com-

plexity and worked examples have only been presented

for various combinations of elastic or incompressible

viscous materials (e.g. Biot, 1959, 1961; Biot et al.,

1961; Biot and OdeÂ , 1962). The coe�cients of the

governing set of equations for folding of elasto-viscous

materials are not necessarily symmetric and this
important di�culty only disappears for isotropic
incompressible materials (Biot and OdeÂ , 1962). Results
calculated from Biot's equations for the reduced
incompressible viscous case show (relatively minor)
divergence from exact in®nitesimal results derived
speci®cally for incompressible viscous materials (e.g.
Fletcher, 1974, 1977; Smith, 1975), which also raises
questions about the exactitude of the general theory.

Partly due to this lack of a usable theoretical basis,
the assumption has generally been made in the past
that, for slow natural deformation rates on the order
of 10ÿ14 sÿ1, viscous behaviour dominates and that
the elastic component exerts little in¯uence on the
observed fold geometry (e.g. Biot, 1961). The corre-
spondence between purely viscous theoretical and
numerical models and slowly deformed analogue scale-
models, in which the materials are truly elasto-viscous,
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would support this assumption. However, the proposal
has certainly not been fully tested, and the possible
importance of elastic behaviour in the initial stages
of folding for introducing both shorter wavelength
components and greater spatial variability has been
emphasized by several authors (e.g. Price and Cosgrove,
1990; Hunt et al., 1996a).

A recent paper by Zhang et al. (1996) that considered
single-layer folding of elasto-viscous (and elasto-plastic)
materials using a ®nite-di�erence FLAC code (Fast
Lagrangian Analysis of Continua, Cundall and Board,
1988) reported results that are markedly di�erent from
both existing viscous theory and analogue scale-
models. In their numerical models, a wavelength close
to the `dominant' (i.e. fastest growing) wavelength, as
determined by viscosity contrast and layer thickness,
was established at higher strain (>10% shortening)
even when the initial periodic perturbation wavelength
was much shorter. For an isolated initial perturbation,
they found that folding propagated rapidly along
the layer to again establish a nearly periodic form
approaching the dominant wavelength. These results
suggest that the shape of initial irregularities has only
a subordinate in¯uence on ®nite amplitude fold
geometry. Their models also require that hinge
migration occurs during fold ampli®cation, to establish
a near dominant wavelength di�erent from the initial
perturbation wavelength. This result would invalidate
the primary assumption of most published numerical
studies that have considered perfectly periodic initial
irregularities (e.g. Dieterich and Carter, 1969;
Stephansson and Berner, 1971; and many others),
namely that only a single half-wavelength segment
with planar boundary conditions need be modelled.
This can only hold true if fold hinges and in¯ection
points remain ®xed to the same material points. Since
wavelength components develop that were not present
in the initial perturbation, the results of Zhang et al.
(1996) can also not be reproduced by an analysis
involving linear superposition of Fourier components
amplifying independently (e.g. Biot, 1961; Mancktelow
and Abbassi, 1992).

The present paper studies the growth of single-layer
folds from an initial small amplitude perturbation
using ®nite-element modelling (FEM). Model par-
ameters are the same as used by Zhang et al. (1996)
and material properties are chosen to cover the range
of expected rock behaviour, including non-linear
power-law viscosity with stress exponents up to 5.
The aim was to replicate either the FLAC results or
the analogue scale-model results of Abbassi and
Mancktelow (1992). The FEM results are e�ectively
identical to those from the analogue scale-modelling
and do not corroborate the earlier FLAC models.
Although study of simpli®ed periodic or isolated initial
perturbation forms provides an excellent basis for

understanding the mechanisms of ®nite amplitude fold-
ing, initial perturbations in most natural rock layers
are unlikely to be so regular. Indeed, it is commonly
assumed that periodic folds of dominant wavelength
develop from a random distribution of original irregu-
larities in the layer surface. This possibility has been
investigated in a series of experiments with pertur-
bations of di�ering maximum initial amplitudes, for a
range of e�ective viscosity contrasts and both linear
and power-law (elasto-) viscous rheologies. Even for
such random initial irregularities, the ®nite amplitude
shapes are still clearly in¯uenced by the initial input
form and the observed lack of strict periodicity
in natural folds (e.g. Sherwin and Chapple, 1968;
Cobbold, 1976; Fletcher and Sherwin, 1978; Price and
Cosgrove, 1990) probably re¯ects initial perturbation
in¯uence more than localization due to rheological
e�ects (e.g. Hunt et al., 1996a,b; Whiting and Hunt,
1997).

2. Previous work

The body of published theoretical and experimental
work on single-layer folds is very large, but the recent
numerical work of Zhang et al. (1996) appears to be
the ®rst attempt to consider ®nite amplitude single-
layer folding, where both layer and matrix are com-
pressible elasto-viscous materials. Previous analytical
and numerical studies have all considered some combi-
nation of simpler rheologies: e.g. elastic layer in an
elastic matrix (e.g. Gough et al., 1940; Goodier, 1946),
viscous layer in a viscous matrixÐboth linear and
non-linearÐ(e.g. Biot, 1959; Biot and OdeÂ , 1962;
Ramberg, 1963; Dieterich and Carter, 1969; Parrish,
1973; Hudleston and Stephansson, 1973; Fletcher,
1974, 1977; Smith, 1975; Cobbold, 1977; Hudleston
and Lan, 1993; and many others), elastic layer in a
viscous matrix (e.g. Biot, 1961, 1965), and most recently
elastic layer in an elasto-viscous matrix (e.g. Wilson
and Vinson, 1983; Hunt et al., 1996a,b; Bhalerao and
Moon, 1996a,b; Whiting and Hunt, 1997). Excellent
summaries of the analytical approach to single-layer
folding are given in Biot (1961, 1965) and Johnson
and Fletcher (1994). First-order analytical results for
incompressible viscous materials provide a theoretical
basis for understanding fold selectivity and initial
growth, and their extension to second- (Fletcher, 1979)
and third-order (Johnson and Fletcher, 1994) also allows
an accurate description of fold growth to small but
®nite limb dips (<0208). This, of course, is provided
that a more realistic elasto-viscous description does
not lead to any fundamental di�erence in behaviour.
Analogue scale-modelling would suggest otherwise,
since the initial growth rates and overall geometry of
single layer folding appears to be broadly consistent
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with the predictions of ®rst-order theory (e.g.
Mancktelow and Abbassi, 1992).

3. Method

The FEM modelling is based on the commercial
package MARC±Mentat. Mentat represents the front-
end graphic user interface, allowing interactive mesh
generation, boundary condition and material property
de®nition, etc., as well as post-processing and graphi-
cal representation of the results. In theory, the whole
process of model generation, job submission and result
analysis should be possible in interactive mode, but in
practice it is more e�ective to ®rst generate a standard
input ®le for a given planar layer thickness, standard
material properties and boundary conditions with
Mentat, modify this standard ®le for each submission
to the main FEM program MARC, and then analyse
the generated post-processing ®le again with Mentat.

Time-stepping for viscous creep is automatically
modi®ed within the program to maintain given toler-
ances. In all the models presented here, these
tolerances were that the creep strain in any one
increment never exceeds 0.5 of the elastic strain
(a necessary constraint to maintain numerical stability),
and that the stress change during the increment does
not exceed 0.1 of the current stress. Since the elastic
strain in the models is generally small (for stresses on
the order 100±102 MPa at imposed strain rates of
10ÿ14 sÿ1), the time steps are also small and become
smaller for lower viscosities. Most models involved on
the order of 3000±30,000 increments for between 20
and 70% total shortening, depending on material
properties (especially whether linear or power-law
viscous rheology). This is an important di�erence from
previously published, purely viscous FEM models of
folding where step sizes were commonly on the order
of 1±5% shortening (e.g. Stephansson and Berner,
1971; Cobbold, 1977; Casey and Huggenberger, 1985).
The tolerance on convergence in each step was left at
the default value, namely that the sum of the residual
forces may not exceed 0.1 of the reaction forces, and
this value was only ever approached at the end of
large strain runs (e.g. >60% shortening), when the

mesh was locally very distorted. Further details on
methods and element geometry, as well as postal and
internet contact addresses of the distributor, are given
in the Appendix.

4. Material properties

Rock rheology is modelled as a Maxwell elasto-
viscous material, represented by the in-series addition
of a compressible linear elastic element and an incom-
pressible linear or power-law viscous element. For the
elastic component, the Poisson's ratio is taken as 0.25
for both layer and matrix, which was also the value
used in the models of Zhang et al. (1996). Values for
other parameters used for the di�erent runs of the
current study (for de®nitions, see the Appendix are
listed in Tables 1±5 and are within the range estab-
lished for natural rocks (e.g. see appendix of Turcotte
and Schubert, 1982). For direct comparison, runs were
also made with the same parameters employed by
Zhang et al. (1996), which are listed in Table 1, with
an imposed strain rate of 10ÿ14 sÿ1. These authors
maintained the same ratio between layer and matrix
for both elastic and viscous parameters (i.e. in the
range from 20:1 to 200:1). However, the measured
range in Young's modulus for natural rocks is only
about a single order of magnitude. To compare with
natural and analogue scale-model folding, the ratio in
Young's moduli was therefore taken as 1:1 (Table 3),
2 :1 (Tables 2, 3 and 4) or 10:1 (Table 5) between layer
and matrix, with values in the range 1� 109±6�1010
Pa. Viscosities employed (1018±1022 Pa s) were gener-
ally higher than in the earlier study but details of

Table 1

Values relevant to Figs. 3 and 9, after Zhang et al. (1996). Newtonian

linear viscosity, strain-rate not stated

R El [Pa] Em [Pa] Zl [Pa s] Zm [Pa s]

20 3.5� 1010 1.75�109 1� 1020 5�1018

50 3.5� 1010 7.00�108 1� 1020 2�1018

100 3.5� 1010 3.50�108 1� 1020 1�1018

200 3.5� 1010 1.75�108 1� 1020 5�1017

Table 2

Values relevant to Figs. 1, 2, 10, 11a, 16 and 17. Newtonian linear viscosity

R El [Pa] Em [Pa] Zl [Pa s] Zm [Pa s] de/dt [sÿ1] Del Dem

20 6�1010 3� 1010 3.33� 1021 1.67�1020 1� 10ÿ14 1.4� 10ÿ3 1.4� 10ÿ4

50 6�1010 3� 1010 8.33� 1021 1.67�1020 1� 10ÿ14 3.5� 10ÿ3 1.4� 10ÿ4

100 6�1010 3� 1010 8.33� 1021 8.33�1019 1� 10ÿ14 3.5� 10ÿ3 6.9� 10ÿ5

200 6�1010 3� 1010 1.67� 1022 8.33�1019 1� 10ÿ14 7.0� 10ÿ3 6.9� 10ÿ5
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strain rate(s) were not listed in Zhang et al. (1996), so

that direct comparison of ¯ow stress levels is not poss-

ible. This is important, since it is the non-dimensional

Deborah number, De, equal to the ratio of the stress

magnitude to the elastic shear modulus (i.e. viscosi-

ty� strain rate/shear modulus) that is important in

scaling elasto-viscous Maxwell-type rheologies (e.g.

Poliakov et al., 1993). This ratio also determines the

maximum stable size of steps for the numerical models,

so that if there is no signi®cant di�erence in behaviour

it is more e�cient to employ higher viscosities (or

higher strain rates) and/or lower elastic moduli. Values

of De for layer (Del) and matrix (Dem) are listed

Tables 1±5. Poliakov et al. (1993) estimate limits for

the Deborah number in the upper crust to be 10ÿ4±

10ÿ3 and 10ÿ3±10ÿ2 for the upper mantle (i.e. the

levels where the elastic e�ects are expected to be great-

est) and note that ¯ow exhibits viscous behaviour for

De<10ÿ2. This is qualitatively con®rmed in Table 3.

On the innermost arc of the periodic folds developed

in these models (see Fig. 6 later), the elastic strain is

very small relative to the viscous creep strain for

De<10ÿ2. The range of values of De employed in the

current series of numerical experiments is 7� 10ÿ5 to

0.25. Rheologies with still lower values of De are e�ec-

tively viscous and have been considered in many pre-
vious numerical modelling studies (e.g. Dieterich and
Carter, 1969; Hudleston and Stephansson, 1973;
Parrish, 1973; Parrish et al., 1976; Cobbold, 1977).

The e�ect of non-linear viscous behaviour according
to the power-law relationship _e=As n, with stress
exponents of 3 for the matrix and 3 and 5 for the layer
was also investigated (Table 4). In particular for higher
n values, it is necessary to use units of
a more realistic scale (e.g. MPa, 1010 s, etc.) than stan-
dard SI units for program input to avoid numeric
under- and over¯ow, particularly in the pre-exponen-
tial constant A. The FEM program MARC assumes
that the material properties entered were determined in
uniaxial tests and generalizes the result to any geome-
try in terms of the second invariants of stress and
strain (or e�ective shear stress and e�ective strain rate,
see Ranalli, 1995, p.76). For plane strain geometry
and incompressible linear viscous rheology, where
sxx=4Z_exx and the deviatoric stress s

0
xx=2Z_exx, the

viscosity Z=1/(3A), where A is the pre-exponential
constant in the general power-law relationship above.
Deviatoric stresses are in the range of 02±5 MPa in
the matrix and 100±400 MPa in the layer. These values
are thought to be fairly realistic; common values
quoted for the range of averaged stress in the litho-
sphere are 10±150 MPa (e.g. Hanks and Raleigh,
1980).

5. Model geometry and boundary conditions

The overall model dimensions were exactly as
employed by Zhang et al. (1996). The length was 198
units, the width 128 units, and the layer 2 units thick.
The contact between layer and matrix was `welded'
(i.e. non-slipping). Between 3300 and 10,400 quadratic

Table 4

Values relevant to Figs. 11b and 18. Non-Newtonian power-law vis-

cosity

R El [Pa] Em [Pa] Al nl Am nm de/dt [sÿ1]

50 6� 1010 3� 1010 6.400�10ÿ40 3 8� 10ÿ35 3 1� 10ÿ14

50 6� 1010 3� 1010 1.024�10ÿ56 5 8� 10ÿ35 3 1� 10ÿ14

NB. the constants are scaled to more reasonable units (MPa etc.)

for program input.

Table 5

Values relevant to Fig. 12. Newtonian linear viscosity

R El [Pa] Em [Pa] Zl [Pa s] Zm [Pa s] de/dt [sÿ1] Del Dem

50 5� 1010 5� 109 5� 1019 1� 1018 1� 10ÿ12 2.5� 10ÿ3 5.0� 10ÿ4

100 5� 1010 5� 109 1� 1022 1� 1020 1� 10ÿ14 5.0� 10ÿ3 5.0� 10ÿ4

Table 3

Values relevant to Figs. 6, 7, 13, 19 and 20. Newtonian linear viscosity

ee/ec El [Pa] Em [Pa] Zl [Pa s] Zm [Pa s] de/dt [sÿ1] Del Dem

2.86 1�109 1� 109 1� 1022 1� 1020 1� 10ÿ14 2.5� 10ÿ1 2.5� 10ÿ3

0.43 5�109 5� 109 1� 1022 1� 1020 1� 10ÿ14 5.0� 10ÿ2 5.0� 10ÿ4

0.18 1�1010 5� 109 1� 1022 1� 1020 1� 10ÿ14 2.5� 10ÿ2 5.0� 10ÿ4

0.03 5�1010 5� 109 1� 1022 1� 1020 1� 10ÿ14 5.0� 10ÿ3 5.0� 10ÿ4

ee/ec is the ratio between equivalent elastic and creep strain in the inner arc of the models of Fig. 6, at log. strain=ÿ0.2.
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elements were employed and the mesh progressively
re®ned to either side of the layer, six elements repre-
senting the layer width. Models were deformed in
plane strain with a constant natural strain rate of
1� 10ÿ14 sÿ1 imposed at the boundaries (or in one
case 10ÿ12 sÿ1, see Table 5). The necessary (time-
dependent) velocity boundary condition was applied to
the left and right planar sides of the rectangular mesh
and, in general, the upper and lower boundaries were
left unconstrained. However, models with an initial
sinusoidal perturbation and viscosity ratios of 100:1
and 200:1 were also rerun with the y coordinates of
the upper and lower surfaces constrained to maintain
perfect pure shear. It is these results that are presented
in Fig. 1(a). The additional constraint (slightly)
dampens the boundary e�ects on the folding layer,
but because the materials are compressible, it also
produces weak edge e�ects in the matrix at the four
corners. For most models, the y coordinate of the mid-

point of each side was held ®xed but in models with a
centre of symmetry (i.e. those of Figs. 1(b) and 2, with
an in¯ection point to the initial periodic perturbation
at the central point), this central point was ®xed.

6. Perturbation geometry

Three di�erent perturbation geometries were investi-
gated: periodic, isolated bell-shaped and random. The
®rst two cases were chosen for direct comparison with
both the previous FLAC study and the analogue scale-
modelling of Abbassi and Mancktelow (1992), whereas
the random initial variation in layer thickness may be
more directly comparable with the development of
many natural folds. As noted earlier, the layer thick-
ness was in all cases 2 units and the length 198 units.
The periodic perturbation was in most models of the

Fig. 1. FEM models of single layer buckling in elasto-viscous ma-

terials with the same initial geometries and viscosity contrasts as

Fig. 3 (material properties listed in Table 2). In (a) an

in¯ection point of the initial periodic perturbation is at the boundaries,

the same as in Fig. 3, whereas in (b) it is a hinge point, which gives

better boundary conditions because the axial plane remains vertical

and planar throughout the experiments. The R-values give viscosity

ratios and all examples are for e=ÿ0.2 bulk logarithmic shortening

(018% shortening). No signi®cant di�erence in results is obtained if

the parameters of Table 1 from Zhang et al. (1996) are used, with a

strain rate of 10ÿ14 sÿ1.

Fig. 2. Ampli®cation of an initial periodic perturbation with wave-

length 66 times layer thickness. Other parameters are identical to

those with R=50 in Fig. 1(b) (Table 2).
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form 0.1 cos(px/6), that is a total of 33 half-wave-
lengths of amplitude 0.1 in the length of the model,
corresponding to an initial wavelength to thickness
ratio of 6 :1. This is lower than the theoretical domi-
nant wavelengths for incompressible linear viscous
materials, which are 10.3, 13.4, 16.5 and 20.6 times
layer thickness for the viscosity ratios of 20, 50, 100,
and 200 employed in the models (Fletcher 1974, 1977;
see Fig. 5a). Models were initially calculated with per-
turbation in¯ection points at the boundaries and a
hinge in the centre (cosinus form) for direct compari-
son with Zhang et al. (1996). However, since in¯ection
points do not lie on a plane of constant
x-displacement, marked edge e�ects occur at higher
viscosity contrasts (Fig. 1a). These e�ects can be
avoided in models with hinges at the boundaries and
an in¯ection point at the centre (sinus form, Fig. 1b),
as employed in most previous studies (e.g. Dieterich
and Carter, 1969; Stephansson and Berner, 1971;
Parrish, 1973; Stephansson, 1974; Hudleston and Lan,
1993). One model was also run with an initial wave-
length to thickness ratio of 66:1, much larger than the
dominant wavelength (Fig. 2).

The exact geometry of the initial isolated pertur-
bations is not given in Zhang et al. (1996). Their pertur-
bations A, B, and C are stated to be similar to the
corresponding mathematically-de®ned Perturbation A,
B and C of Abbassi and Mancktelow (1992), although it
is clear from inspection of their ®gures that at least their
perturbation C is not a perfect bell-shape. These slight
di�erences are not insigni®cant. They will be re¯ected in
the Fourier wavelength components originally present in
the perturbation and since the ampli®cation during
buckle folding is wavelength speci®c, minor di�erences
can become important at higher fold amplitudes. In this
study, the initial perturbation shapes correspond exactly
to those of Perturbation A, B and C in Abbassi and
Mancktelow (1992), that is a bell-shape of the form
y= b/[1+(x/a)2] with values of a chosen to give aver-
age wavelengths of 8, 16 and 32 times layer thickness
(Perturbation A, B, and C, respectively). Perturbations
in the present study had an initial amplitude of b=0.1
(1/20 of layer thickness) or b=1 (1/2 of layer thickness),
the latter being the same as in the earlier analogue scale-
model studies.

In nature, initial perturbations in the rock layer-
ing will only rarely be approximately periodic (e.g.
ripple marks), and are usually much more irregular,
approaching an uncorrelated random distribution. A
series of model experiments was therefore also per-
formed with random distributions of initial irregulari-
ties of di�erent maximum amplitudes. Segments of
random distributions were repeated in some models, to
establish if there is always a local control on fold
shape by initial perturbation shape, even for random
distributions.

7. Results

The deformed shapes of single layers with an initial
sinusoidal perturbation and (linear) viscosity ratios of
20, 50, 100 and 200:1 are reproduced in Fig. 3 from
Zhang et al. (1996) for comparison with the results of
the current study in Fig. 1. In Fig. 1(a) the initial per-
turbation had in¯ection points at the boundary, corre-
sponding to the initial conditions of Fig. 3, whereas in
Fig. 1(b) the same initial perturbation geometry is
shifted in phase by a quarter wavelength so that hinge
points occur at the boundary, minimizing edge e�ects.
The results in Figs. 1 and 3 are clearly very di�erent.
The original 33 half-wavelengths in the introduced per-
turbation are retained throughout the folding history
in the FEM models of Fig. 1. In contrast to Fig. 3,
there is no tendency for hinge migration and the con-
sequent development of wavelengths closer to the
dominant wavelength appropriate to the material
properties. Hinge and in¯ection points remained ®xed
to the same material points (Fig. 4a). This implies that
the wavenumber of any additional sinusoidal com-
ponents that may develop with increasing ampli®ca-
tion, to produce a fold shape di�erent from the
introduced perfectly similar fold geometry, must be an
integer multiple of the initial wavenumber (as demon-
strated analytically by Johnson and Fletcher, 1994). If
plotted in a Lagrangian co-ordinate system relative to
the initial x-coordinates of the nodes, the shape of the
central surface remains close to perfectly sinusoidal
(Fig. 4b), at least for the low limb dips attained in the
models of Fig. 1(b) (<38). The variation in nodal
x-coordinate position away from the position corre-
sponding to a homogeneous strain also describes a

Fig. 3. Reproduction of Fig. 2a from Zhang et al. (1996) showing

the geometry of their FLAC models for buckled single layers in

elasto-viscous materials, developed from initial periodic pertur-

bations with initial amplitude 1/20 of layer thickness and initial

wavelength 6 times layer thickness. The R-values give viscosity ratios

and all examples are for 20% bulk shortening. Material parameters

are listed in Table 1.
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sinusoidal form, with twice the wavenumber, passing
through the origin at the hinge and in¯ection points.
Consequently, these points are displaced as if the
deformation was homogeneous (e.g. Casey and
Huggenberger, 1985). The lack of hinge or in¯ection
point migration relative to material points justi®es the
assumption of most previous numerical modellers that
analysis of a single half-wavelength segment is su�-
cient in symmetric pure shear experiments of perfectly
periodic forms.

One model was also made with an initial wavelength
to thickness ratio for the sinusoidal perturbation of
66:1 (Fig. 2), again with an amplitude of 1/20 of the
layer thickness and with material parameters corre-

sponding to the 50:1 viscosity ratio of Table 2. Initial
limb dip was very low (00.38) and up to ca. 20%
shortening, most of the strain was accommodated by
layer-parallel shortening. As the bulk shortening
increased, however, a fold shape entirely re¯ecting the
introduced perturbation developed and again hinge
and in¯ection points remained ®xed to the same ma-
terial points throughout the experiment. No tendency
was observed to develop forms more closely re¯ecting
the dominant wavelength.

The initial ampli®cation rates for the models of
Figs. 1(b) and 2, measured as the slope of the near-
perfect linear ®t between ln(A/Ao) and logarithmic
strain up to strain values of 0.05 are closely predicted
by Eq. (29) of Fletcher (1977), derived from an exact
®rst-order analysis of folding for incompressible per-
fectly viscous materials (Fig. 5b). This demonstrates
that, at least for the range of parameters considered in
Table 2, the observed behaviour is adequately
described by viscous theory and the elastic in¯uence
on fold initiation is weak, as already suggested by Biot
(1961).

The e�ects of increasingly elastic behaviour on fold
ampli®cation and shape for periodic forms are investi-
gated in Figs. 6 and 7, for parameters as listed in
Table 3. Since Deborah numbers are unknown for the
earlier study of Zhang et al. (1996), it is possible that
the distinctly di�erent results obtained re¯ected a
greater importance of elasticity than for the par-
ameters employed in Fig. 1. However, Fig. 6 demon-
strates that even when the elastic strain in the layer is
important (Del=0.25; see ®rst column of Table 3),
hinge and in¯ection points still remain ®xed to the
same material points. The 33 half wavelengths are pre-
served throughout the experiments (up to050% short-
ening), similar to Fig. 1. Increasing the elastic
component markedly increases the growth rate for the
short initial wavelength (six times layer thickness),
which consequently leads to di�erent ®nal fold shapes,
as seen in Fig. 7. A simple comparison of the ®rst-
order, thin-plate approximate solutions of Biot (1961)
for an elastic or viscous plate in a viscous matrix can
qualitatively explain the observations.
Fig. 8 predicts that the elastic e�ects should ®rst be
noticeable for model (c) in Figs. 6 and 7 and that the
growth rate for shorter wavelengths around six times
layer thickness should increase dramatically as this
elastic component becomes more important from
models (c) to (b) to (a).

Models starting with an initial bell-shaped pertur-
bation should provide a more sensitive test of elasto-
viscous folding behaviour, since the shape at any time
re¯ects the ampli®cation of a wide range of initial wave-
lengths (Biot et al., 1961; Mancktelow and Abbassi,
1992). The results of Zhang et al. (1996) again show a
strong tendency to develop near dominant wavelengths

Fig. 4. (a) Shape of the central surface (i.e. material points initially

de®ning the mid-line of the layer) that develops from a periodic

initial perturbation for R=50 and boundary conditions of Fig. 1(b).

The shape is plotted relative to the initial x-position of material

(nodal) points, from which it can be seen that the in¯ection and

hinge points of the fold always remain ®xed to the same material

points. (b) One wavelength of the same fold train, with sinusoidal

curves plotted through the data points. Note that at least for these

values of fold ampli®cation, the shape of the fold relative to the

initial x-coordinates of nodal points remains perfectly sinusoidal.

Plotted relative to current x-coordinates, the shape is no longer sinu-

soidal.
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along the length of the layer at shortening values above
015% (Fig. 9). In contrast, the results from the
current FEM modelling (Fig. 10) are very similar in
form to those observed in both analogue scale-model
experiments (Cobbold, 1975; Abbassi and Mancktelow,
1992) and earlier FEM studies of purely viscous
materials (Cobbold, 1977). Propagation along the layer
away from the central introduced perturbation is slow
and progressive, rather than developing rapidly above
some threshold as suggested by Fig. 9. Power-law vis-
cous behaviour (Fig. 11) further accentuates this localiz-

ation, weakening the tendency to develop adjacent
synforms to the initial antiformal perturbation. The gra-
dual serial addition of structures along the layer away
from the initial perturbation is well seen in Fig. 12,
where shortening has been maintained to values of
around ÿ1.3 logarithmic strain (073% shortening). A
striking feature is that although folds are added serially,
the ®nal internal shape in the fold packet is nearly per-
fectly periodic and of constant amplitude. The only indi-
cation of progressive development is the change in layer
thickness along the folds, particularly marked at lower
viscosity contrast.

The in¯uence of increasingly elastic behaviour (i.e.
increasing Deborah number) during ampli®cation on
an isolated bell-shaped perturbation is demonstrated in
Fig. 13. Overall, the e�ect is to further localize the
folding and decrease the amplitude for the more elastic
models. Again this can be qualitatively understood by
reference to Fig. 8. Since the initial wavelength distri-
bution in a bell-shaped perturbation decreases expo-
nentially from in®nite wavelength (e.g. Abbassi and

Fig. 5. (a) Dominant wavelength of single-layer folds for incompres-

sible linear viscous materials, from Fletcher (1974, 1977). Note that

the initial periodic perturbation in Figs. 1 and 3 (wavelength/layer

thickness=6) is always smaller than the dominant wavelength, and

this di�erence becomes more marked with increasing viscosity con-

trast. (b) Corresponding initial (in®nitesimal amplitude) growth rate

for the dominant wavelength, as well as the initial growth rate for a

fold with wavelength/layer thickness of 6 and 66. Data values deter-

mined from the experiments of Figs. 1(b) and 2 for the growth rate

up to e=ÿ0.05 are also plotted, and agree well with the theoretical

curve despite the di�erences in material properties (compressible

elasto-viscous vs incompressible viscous).

Fig. 6. Ampli®cation of an initial periodic perturbation identical to

Fig. 1(b) for R=100 and di�erent Deborah numbers (Table 3).

Increasing Deborah numbers correspond to an increasingly import-

ant elastic in¯uence on the rheology.

Fig. 7. Enlarged view of the fold shapes developed in Fig. 6 for

di�erent Deborah numbers in the layer.
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Mancktelow, 1992, Fig. 5), promoting growth of these
initially lower-amplitude shorter wavelengths by
increasing the elastic behaviour will result both in a
lower growth of the total isolated form (at least in-
itially) and in a narrower shape, as seen in Fig. 13. In
Fig. 14, a comparison is made between shapes devel-
oped from the same initial perturbation for a ratio in
Young's modulus between layer and matrix of 2:1
(Table 2) and 10:1 (Table 5), for similar Deborah num-
bers, from which it can be seen that di�erences in elas-
tic modulus ratio in this range do not a�ect the overall
fold shape.

Single-wavelength periodic and isolated bell-shaped
perturbations are useful for assessing the factors con-
trolling fold ampli®cation and for direct comparison
with analytical theory, but they are not very realistic.
Natural layers have a much more irregular spectrum
of irregularities, for which the most extreme example is
a completely uncorrelated random distribution. Two
such random distributions were computer generated,
one o�set relative to the other such that there is a sec-
tion common to both (indicated by the arrows on

Fig. 8. Comparison of predicted growth rates from in®nitesimal-

strain thin-plate theory for an elastic or viscous plate in a viscous

matrix (e.g. Biot, 1961), for a constant imposed strain rate of 10ÿ14

sÿ1 as in the models. Values (a) to (d) correspond to the elastic

properties of the corresponding layers in Figs. 6 and 7, while (e) is

for a plate with the viscous rheology common to all these models.

The side load necessary to calculate curves (a) to (d) is taken as

P=ÿ4Z_exx, following Biot (1961).

Fig. 9. Reproduction of Fig. 5 from Zhang et al. (1996) showing FLAC models of the development of folding in elasto-viscous materials from

an isolated initial perturbation at viscosity contrasts of 20 and 100. Initial amplitude of the central perturbation was 0.7 of layer thickness.

Material properties are listed in Table 1.
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Fig. 15). These were then used as initial
perturbations, scaled so that the maximum deviation
to either side of the mean surface was either 1/20 or
1/200 of the layer thickness. In Fig. 16, the e�ects of
the di�erent initial distributions, the maximum
perturbation amplitude and the viscosity contrast are
demonstrated for dominantly viscous materials
(De<10ÿ2, see Table 2). Several important obser-
vations can be made.

1. An initially random distribution does not immedi-
ately lead to a periodic form re¯ecting the dominant
wavelength, although, as might be expected, this
tendency does increase with increasing viscosity
contrast in conjunction with decreasing initial
perturbation amplitude (Biot, 1961).

2. The e�ect of the common segments in the two
di�erent distributions (Fig. 16a and b) can be
readily recognized, demonstrating again the local,
non-correlated nature of fold initiation and ampli®-
cation. The segment from Fig. 16(a) could be cut
out and overlaid in the corresponding position
of Fig. 16(b) and there would be no signi®cant
di�erence.

3. A qualitative comparison with natural single layer
folds indicates that the long wavelength forms
characteristic of viscosity contrasts greater than
100:1 are uncommon (e.g. Sherwin and Chapple,
1968). Obviously there are cases where such large
viscosity contrasts may occur (e.g. calc-silicate
layers in marbles), but the contrast in behaviour is
then so great that plasticity e�ects should also be
considered (e.g. Biot, 1961; Chapple, 1969). Smith

Fig. 10. FEM models directly comparable to the FLAC models of Fig. 9 for di�erent values of bulk shortening (given as logarithmic strain

values). Material properties are listed in Table 2. Initial amplitude of the bell-shaped central perturbation was 1/2 of layer thickness.

Perturbations. A, B, and C correspond exactly to those employed in Abbassi and Mancktelow (1992). Note the absence of a sudden propagation

sideways along the layer at higher values of bulk shortening and thus the tendency to greater localization.
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(1979) has shown that, for very strong power-law
behaviour (which approaches plastic behaviour for
stress-exponents n>>1), low wavelength/thickness
folds can still develop even when the e�ective
viscosity contrast between layer and matrix is large.

4. Not surprisingly, smaller initial amplitude leads to a
smoother overall shape. In the case of high viscosity
contrast, the ®nite fold shape is not greatly altered.
However, for lower viscosity contrast (e.g. 50:1),
the small initial amplitude leads to much greater
layer parallel thickening prior to the `explosive'
phase of fold development (e.g. Biot, 1961; Ramberg,
1964; Hudleston, 1973; Abbassi and Mancktelow,
1992) and thus to quite di�erent ®nal fold shapes at
high strain (Fig. 17). In this case, longer wavelength
components in the initial distribution dominate the
®nal form and the folds at high bulk shortening show
similarities to those developed in higher viscosity

contrast experiments with larger initial perturbation
amplitudes (e.g. 200:1 in Fig. 16a).

These observations are similar for elasto-power-law
viscous rheologies (Fig. 18). The di�erences that are
observed can be directly correlated with the increased
growth rate and shorter dominant wavelength devel-
oped for folding in non-linear viscous materials (e.g.
Fletcher, 1974; Smith, 1977). For the same (e�ective)
viscosity contrast, layer-parallel shortening is therefore
less important and the in¯uence of decreasing the in-
itial perturbation amplitude is reduced. However, the
general principles are similar to those established for
linear viscous behaviour (Fig. 16) and recognition of
non-linear behaviour from fold shape alone is di�cult
(compare Fig. 16a and 18). Lan and Hudleston (1991,
1995, 1996) showed that the shape of high-amplitude
folds is sensitive to the degree of non-linear behaviour,
becoming sharper-hinged as the power-law exponent
increases, but this shape e�ect is not immediately
apparent in the models of Fig. 18.

The in¯uence of increasingly elastic behaviour (i.e.
increasing De) on fold development, for the same
initial random distribution and linear viscosity con-
trast, is shown in Fig. 19. As discussed earlier with
reference to Fig. 8, increasing the elastic contribution
promotes faster growth of shorter wavelengths. It also
results in a narrower bandwidth of strongly ampli®ed
wavelengths, resulting in greater selectivity during fold
growth from the initial random perturbation. A
shorter wavelength, more regularly periodic wave train
is therefore developed as the Deborah number is
increased from Fig. 19 (d) to (a). The faster growth
rates also reduce the in¯uence of the initial pertur-
bation amplitude (compare Fig. 20a, b with Fig. 17).
However, the in¯uence of the initial distribution is still
evident, as is demonstrated by comparing the identical
segments forming the right and left halves of Fig. 19a
and c, respectively (distributions 1 and 2 in Fig. 15).

There are 20 in¯ection points de®ning 19 arcs (or 912
`waves') in Fig. 19(a). Relative to the initial layer
length (198 units) and thickness (2 units), this corre-
sponds to an average `initial fold wavelength' of 10.4.
However, rapid fold growth in this model only sets in
after ca. ÿ0.2 logarithmic strain, preceded by a period
of dominantly layer-parallel shortening. The average
fold wavelength is then around 7 times the layer thick-
ness at the time of transition between dominantly
layer-parallel shortening and buckling modes of defor-
mation. This value is larger than the value of around 5
that can be read from Fig. 8 for the appropriate curve
(a) for elastic buckling of a single layer in a viscous
matrix. However, these curves were calculated assum-
ing that the load in the layer attains a value appropri-
ate for steady viscous ¯ow (sxx=4Zl_exx=400 MPa).
In practice, buckling occurs in the elasto-viscous layer

Fig. 11. (a) Ampli®cation of Perturbation B in elasto-linear viscous

materials with viscosity ratio of 50:1 (material properties in Table 2).

Initial perturbation amplitude is 1/2 of the layer thickness. Note the

weak tendency to sideways fold propagation. (b) Ampli®cation of

Pert. B in elasto-power law viscous materials with e�ective viscosity

ratio of 50:1 for the basic state of the bulk deformation (material

properties in Table 4). Initial perturbation amplitude is 1/2 of the

layer thickness. Except for the non-linear viscous property, par-

ameters are the same as Figs. 10 and 11(a). Note the faster growth

rate and stronger localization in non-linear viscous materials, with

only a weak tendency to develop ¯anking synforms compared to

Figs. 10 and 11(a). The FEM model failed to converge to desired tol-

erances at higher bulk shortening due to the large distortion of the

grid in the inner hinge of the fold.
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Fig. 12. Ampli®cation and lateral propagation of initial bell-shaped Pert. B for elasto-(linear)viscous materials with viscosity ratios R=50 and

100, to a maximum shortening of e=ÿ1.3 (073% shortening). Note the eventual development of a perfectly periodic fold packet of constant

amplitude, although the folds themselves are serially developed. Initial perturbation amplitude was only 1/20 of the layer thickness. Material

properties listed in Table 5.

Fig. 13. In¯uence of increasing elasticity on folding developed from

an initial isolated perturbation. (a)±(d) refer to Deborah numbers

(Table 3) and correspond to the identical values in Fig. 6.

Fig. 14. Models demonstrating the lack of in¯uence of an increased

contrast in Young's modulus between layer and matrix.
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of Fig. 19(a) well before this value is reached, peaking
at an average value of 0180 MPa along the mid-line
of the layer at logarithmic strain 0ÿ0.2. With this
value, curve (a) in Fig. 8 would peak at a wavelength/
thickness ratio of 07.6, close to the observed value.
This suggests, perhaps not surprisingly, that it is the
elastic component of the rheology that determines the

Fig. 15. Random initial distributions 1 and 2 with exaggerated

amplitudes for clarity. In practice, maximum amplitudes are either

1/20 or 1/200 of the layer thickness. The section of the sequence that

is common to both distributions is indicated by the arrow.

Fig. 16. Single-layer folds developed in elasto-(linear)viscous ma-

terials with initial random perturbation distributions 1 and 2 at

e=ÿ0.6 (045% shortening). Viscosity ratio is either 50:1 or 200:1

and other parameters as in Table 2.

Fig. 17. Models demonstrating the in¯uence of initial perturbation

amplitude on the ®nal geometry of single-layer folds. All parameters

are the same except for initial maximum amplitude (distribution 1,

viscosity ratio 50:1, other values see Table 2.

Fig. 18. Single-layer folds developed in elasto-(power-law)viscous

materials with initial random perturbation distribution 1 at e=ÿ0.4
(033% shortening). Viscosity ratio is 50:1, other parameters as in

Table 4.
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wavelength in the elasto-viscous layer for such high
Deborah numbers.

8. Discussion

Overall, the results for folds developed from periodic
and isolated initial perturbations in elasto-viscous ma-
terials are similar to earlier analytical and numerical
modelling results for purely viscous behaviour and the
in¯uence of increasingly elastic behaviour can be quali-
tatively predicted from approximate theories for elastic
and viscous plates in a viscous matrix (e.g. Fig. 8).
The reason for the marked di�erences from the only
earlier directly comparable study of Zhang et al.
(1996) is not readily apparent. Since their results could

not be reproduced in this study, even for a very wide
range of elasto-viscous material parameters, the di�er-
ence must lie in the di�erent numerical modelling tech-
niques employed. The similarity of the current results
to analogue scale-model experiments using elasto-vis-
cous materials (e.g. Cobbold, 1975; Abbassi and
Mancktelow, 1992) provides independent support for
the ®nite-element models presented here.

As discussed by Biot (1961) in his consideration of
the bandwidth of fold ampli®cation and associated
wavelength selectivity, total ampli®cation needs to be
on the order of 1000 for a single dominant wavelength
to become well-established from an initial random dis-
tribution. This will never be achieved in natural
examples. As again con®rmed in Figs. 16 to 18, wave-
length selectivity from the initial broad band available
in the random perturbation only occurs at low limb
dip and is rapidly `frozen in'. A simple calculation
establishes that the required maximum amplitude of
initial irregularities is unrealistically small for ampli®-
cation on the order of 1000 to be achieved before such
low limb dips are exceeded (see appendix of
Mancktelow and Abbassi, 1992). Natural single-layer
folds have wavelengths suggesting moderate viscosity
contrasts (e.g. Sherwin and Chapple, 1968) and the
ratio of layer-parallel shortening to fold ampli®cation
scales as the square of the limb dip (Ramberg, 1964).
Taken together this implies predominance of layer-par-
allel shortening over fold ampli®cation in natural situ-
ations where the initial perturbations could be of the
order necessary for establishing a clear periodic form
of narrow bandwidth. Strongly elastic behaviour does
promote a more periodic form, but the e�ect only
becomes marked for high Deborah numbers requiring
either a low elastic shear modulus (e.g. 109 Pa for the
examples considered here), high e�ective viscosities or
fast strain rates. Even then, the initial random distri-
bution can still be recognized in the ®nal fold form.
For most natural single-layer folding, the e�ects of
initial irregularities will never be overcome, as re¯ected
in the only quasi-periodic forms observed, which are
similar to those produced in this study from random
initial perturbations of small but ®nite amplitude.

9. Conclusions

The FEM results rea�rm the earlier observations of
Cobbold (1975, 1977), Williams et al. (1978) and
Abbassi and Mancktelow (1992) that the initial pertur-
bation geometry exerts a strong in¯uence on the
geometry of ®nite-amplitude folds. At low strain rates
and stresses, considering a more realistic compressible
elasto-viscous rheology as appropriate to natural rocks
does not signi®cantly change the observations when
compared to earlier studies for purely viscous behaviour

Fig. 19. E�ect of increasing Deborah numbers (i.e. increasing elastic

in¯uence) on the fold geometry developed from initial random distri-

bution 1 (see Fig. 15), with maximum initial amplitude 1/20 of the

layer thickness. Material parameters are the same as for Figs. 6 and

13, and are listed in Table 3.

Fig. 20. In¯uence of initial random perturbation geometry on folding

at high Deborah number (De=0.25). Material properties are the

same as Fig. 19(a).
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(Biot, 1961). An initial perfectly periodic perturbation
ampli®es and modi®es its shape during ampli®cation,
but hinge and in¯ection points remain ®xed to ma-
terial points, which deform as if they were passive
markers in a homogeneous deformation (Casey and
Huggenberger, 1985). Folds develop serially away
from an isolated initial perturbation to eventually
develop a periodic form of nearly constant amplitude,
despite the sequential development. Increasing the elas-
tic in¯uence on the rheology changes the ampli®cation
rate and fold shape, but does not modify these funda-
mental observations.

The geometry of initial irregularities is still discern-
ible in the ®nite amplitude folds even when the distri-
bution is random. The e�ect of initial perturbation
shape has only a quite local range, so that the same
random sequence produces the same ®nite fold shape
even when adjacent sequences are di�erent. The quasi-
periodic form of most natural fold trains is very simi-
lar to those produced in the numerical models with
random initial perturbations, suggesting that in nature
it is also the initial perturbation shape that determines
the irregularity observed in the ®nal fold geometry.
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Appendix A

A.1. Material properties

R is the (e�ective) viscosity ratio, El and Em the
Young's elastic moduli, Zl and Zm the viscosities for
linear viscous materials, Del and Dem the Deborah
numbers (De= Z_e/G, where G is the elastic shear
modulus), Al and Am the pre-exponential factor in the
power-law relationship de/dt= As n, with nl and nm
the stress exponents in this same relationship (=1 for
linear viscous). In all cases, the subscripts l and m
refer to the layer and matrix, respectively. The
Poisson's ratio is always 0.25, a Maxwell elasto-viscous
model is employed and the compressibility is assumed

to be only elastic. Although constants are given in
standard SI units (i.e. Pa), in practice they are entered
into the FEM program in stress units of MPa. For
power-law rheologies with higher stress exponents,
time is also considered in units of 1010 s. These
measures are necessary to avoid numerical under- and
over¯ow and as general good numerical programming
practice, avoiding operations involving (unnecessarily)
large and small numbers.

A.2. Solution procedures, element geometry and
program parameters

MARC is marketed by MARC Analysis Research
Corporation, 260 Sheridan Avenue, Suite 309 Palo
Alto, CA 94306 USA (see Internet web pages
www.marc.com or www.marc.de). It is one of several
commercial non-linear ®nite element packages that
have been well-tested both against each other and
against experimental results (e.g. Fanous et al., 1990).
These programs have a wide application in general en-
gineering, in the nuclear industry, and in materials
processing (e.g. in modelling high-strain superplastic
forming of components). Links to many published
articles are provided by the web pages listed above.
The MARC program was developed on the basis of
the displacement method, with force±displacement
relations addressed through the sti�ness of the system.
The program copes with non-linearities due to material
rheology (e.g. elasto-viscous and/or power-law creep
rheology), geometry (large displacements, strains and
rotations, e.g. Hibbitt et al., 1970), and boundary con-
ditions. In a non-linear problem, the system equations
must be solved incrementally. There are several sol-
ution procedures available in MARC for the solution
of non-linear equations, but all models presented here
use the full Newton±Raphson method (e.g. Press et al.,
1986, p.254). The convergence criterion is based on the
magnitude of the maximum residual load compared to
the maximum reaction force. This is appropriate since
the residuals measure the out-of-equilibrium force,
which should be minimized. In MARC, creep is rep-
resented by a Maxwell model. To allow direct input of
typical experimental data, the parameters input for
isotropic materials are those appropriate to a uniaxial
test, namely the Young's modulus, the Poisson's ratio
and the pre-exponential constant and stress exponent
for power-law creep of the form _e=As n. Internally,
these values are then converted to those appropriate to
an e�ective stress vs e�ective strain rate formulation
based on the second invariants of the tensors (e.g.
Ranalli, 1995, p.76).

All experiments were for plane strain, with a default
element thickness of 1 unit. Element type 11 of
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MARC was utilized, which is a four-node, isopara-
metric, arbitrary quadrilateral written for plane strain
applications. The sti�ness of this element is formed
using four-point Gaussian integration. An assumed
strain interpolation formulation is used that signi®-
cantly improves the behaviour of this element during
bending and an optional integration scheme is also
used, which imposes a constant dilatational strain on the
element. This is equivalent to a selective integration
where the four internal Gaussian points are used for
the deviatoric contribution of strain and the centroid
for the dilatational contribution. Constant dilatational
elements are recommended for large strain creep analy-
sis because near incompressibility can produce overly
sti� behaviour and volumetric locking in conventional
elements due to overconstraints, with consequent
degradation of accuracy. The large displacement
option was invoked to signal the program to calculate
the geometric sti�ness matrix and the initial stress
sti�ness matrix. This parameter automatically switches
on the residual load correction option. The large strain
plasticity option is also invoked, so that e�ects of the
change in the metric tensor (e.g. Mase, 1970, p. 13)
resulting from large inelastic deformations are
included. This results in a di�erent sti�ness of the
structure as well as in a modi®ed calculation of stresses
and inelastic strains. This option is used in conjunction
with the updated Lagrange procedure, the use of
which has two consequences. First, the element sti�-
nesses are assembled in the current con®guration of
the element. Second, the stress and strain output is
given in the coordinate system which is applicable in
the updated con®guration of the element. After some
experimentation, it was found that the sparse direct
solver using the minimum degree algorithm for band-
width optimization provided the fastest calculation
times. Results obtained were indistinguishable from
the default pro®le direct solver using the Sloan algor-
ithm for optimization, but calculation times were
improved by around 30%.
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